Developmental considerations of the affective/emotional brain

Dr. Caitlin Hudac University of South Carolina PY 888 – Affective (Cognitive) Neuroscience Spring 2023

C14 Mon 4/24: Student presentations

"What I learned in class this semester ... "

Oral presentation: (10%, 100 points): Students will describe how one specific <u>developmental, clinical, or cultural factor may influence affective neuroscience</u>.

You will be assessed on:

- $\circ\,$ Succinct description and level of familiarity with your topic
- $_{\odot}$ Critical analysis of the existing literature
- Presentation style and/or slides
- Response to questions (at least 2 minutes)

Oral presentation rubric

Proposal papers – structure

Final written paper (30%, 300 points): Proposals should be 7-9 doublespaced pages in length (including title page but excluding references) and written in APA style.

This paper will reflect your knowledge and synthesis of affective neuroscience theories, concepts, and methodologies. It must include theoretical support, utilization, or extension of course materials, and critical analysis of your topic. This project requires some creative thinking, but you are encouraged to brainstorm with Dr. Hudac and your peers.

Theoretical paper proposal

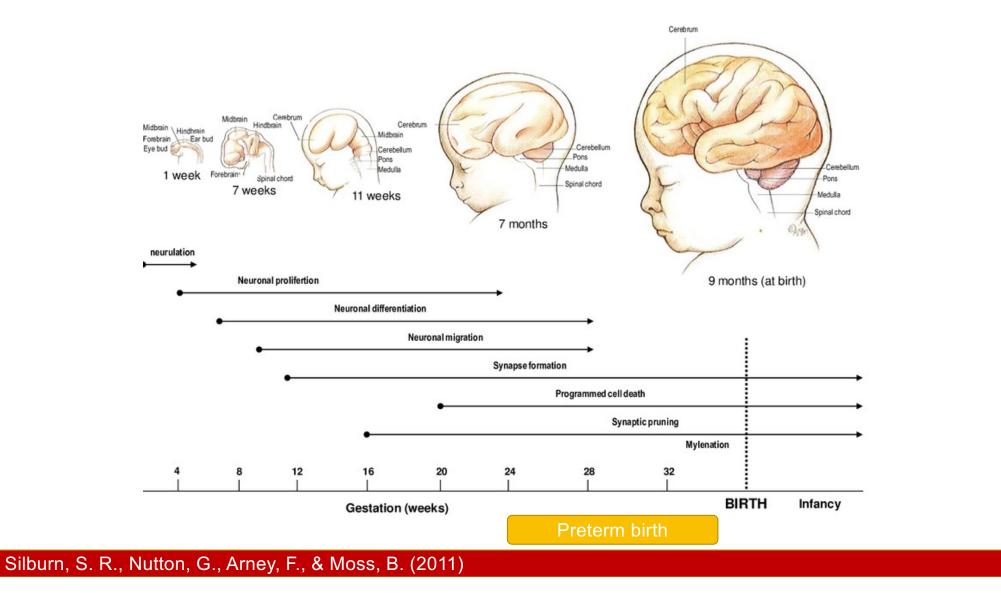
- The paper should review a specific topic in affective neuroscience. It is required that the topic have a focus on affect/emotion and the brain. You must demonstrate knowledge and expertise of at least one methodology.
 - Title page (1 page)
 - <u>Moderate introduction</u> (~3-5 pages): Describe the current scientific need to review the proposal topic, provide adequate and compelling background materials.
 - <u>Detailed description of a primary source</u> (1 page): In a dedicated 1-2 paragraphs, summarize the objective, methodology, specific hypotheses, and results of one critical paper that addresses your proposal topic.
 - <u>Limitations in the literature</u> (~2 pages): An extended discussion should review the outstanding questions in the field and propose what kinds of studies are needed to address these limitations.
 - You may consider ending the proposal with 2-5 sentences describing the broader impact of this potential work.

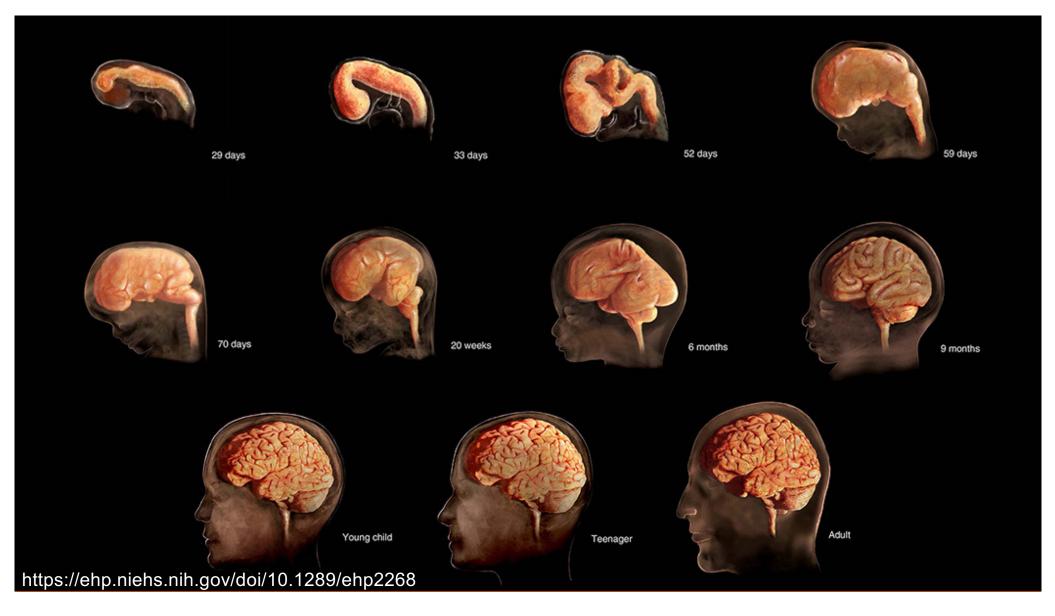
Empirical paper proposal

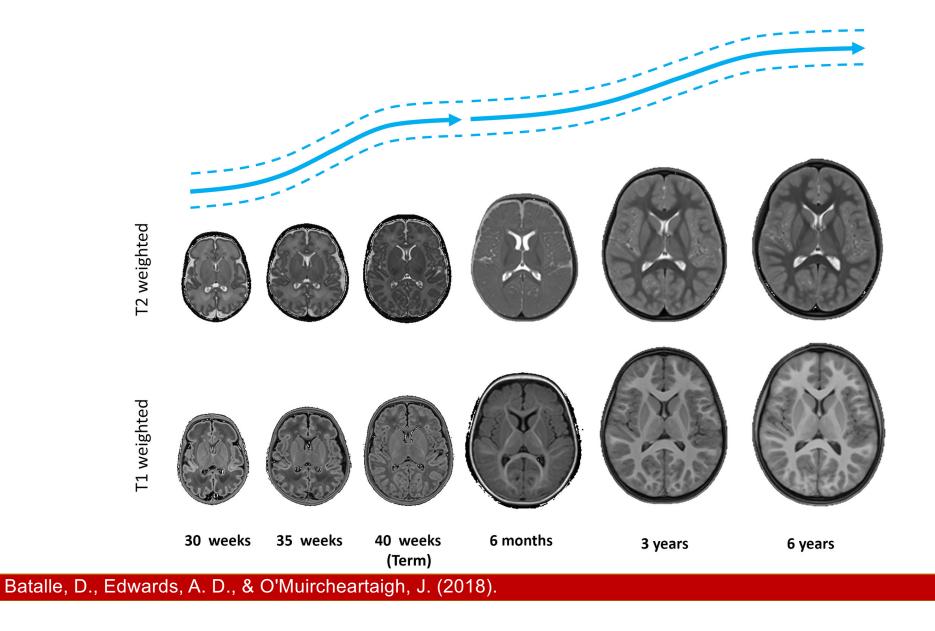
- The paper should be centered on a novel topic in affective neuroscience (i.e., somehow investigating links between affect/emotion and the brain) and should include all the elements found in a brief report journal article:
 - <u>Title page</u> (1 page)
 - **Brief** introduction (~2-4 pages): Describe the current scientific need to **address** the proposal topic, provide adequate and compelling background materials.
 - <u>Current study objective</u> (1 page): <u>In a dedicated 1-2 paragraphs</u>, summarize the objective, overview the method that will be utilized, and generate specific <u>hypotheses</u>.
 - <u>Methods</u> (~3 pages): Briefly describe inclusion/exclusion criteria for your study participants. Fully describe the stimuli and experimental design. Describe equipment to be used, including appropriate settings. Outline planned data processing needs and how you will extract the outcome variables.
 - Discussion is not required, but you may consider ending the proposal with 2-5 sentences describing the broader impact of this potential work.

Final paper details

- You are required to consult with Dr. Hudac (worth 25 points). You will have an opportunity to consult with Dr. Hudac on the last day of class (10-minute slots). However, you may also opt to schedule your consultation earlier in the semester (and as often as you'd like!). This may be helpful in planning your final paper.
- Optional draft: You will have the opportunity to turn in a draft to Dr. Hudac for preliminary grading if sent to Dr. Hudac before 4/10/23 @ 11:59 pm. She will return the draft with brief comments ASAP in the order received. You will not be penalized if you choose not to submit a draft.
- Late papers: For every 24 hours the paper is late, Dr. Hudac will deduct 25 points from your final grade.

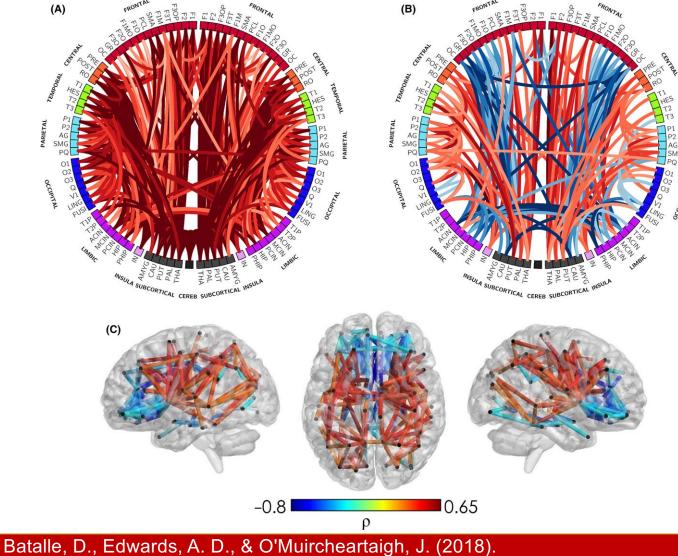
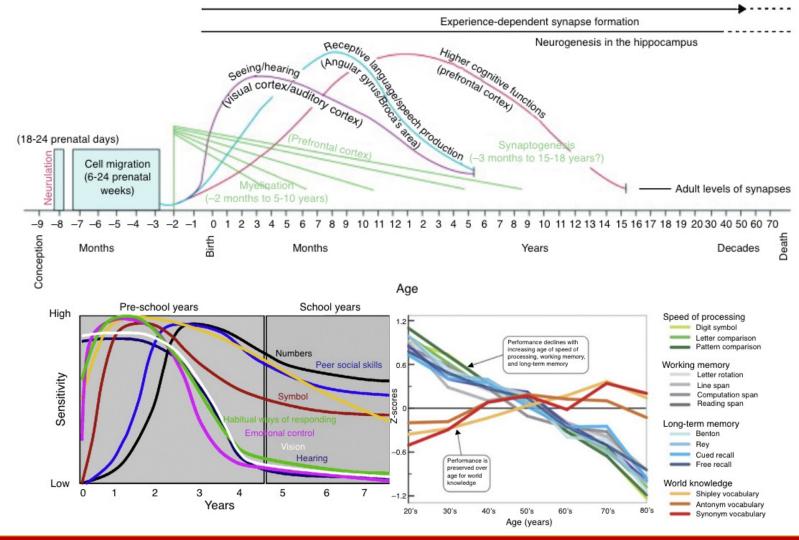

Paper rubric

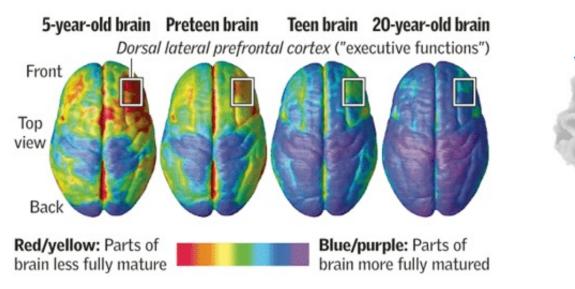

Developmental considerations of the affective/emotional brain


- Anticipated changes from different methods
 - Maturation \rightarrow Function / capacity
- Need for large, longitudinal datasets

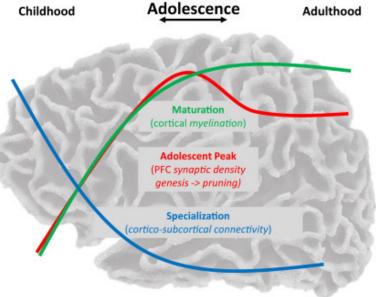
Anticipated changes: fMRI / sMRI

- Developmental changes related to:
 - # synapses / synaptic growth \rightarrow Impacts connectivity
 - Synaptic pruning \rightarrow Impacts efficiency
 - Density/volume \rightarrow Impacts capacity
- Often need to consider <u>combinatory</u> effects

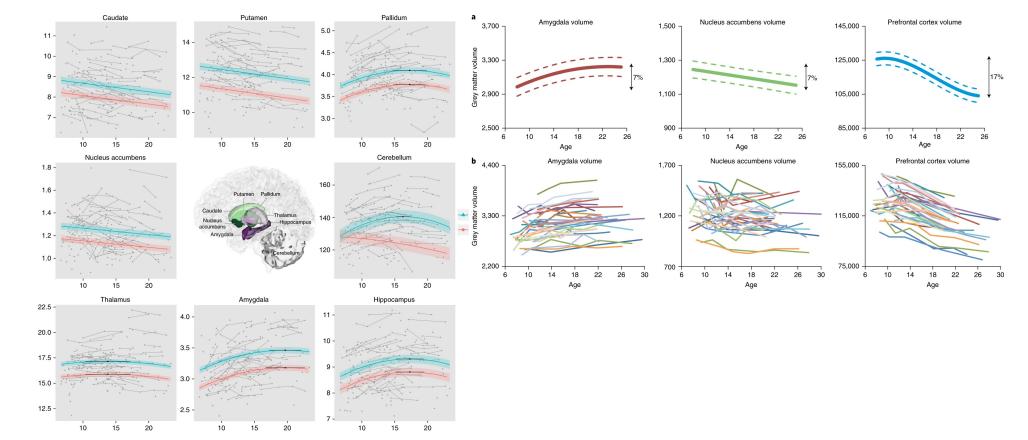

Figure 3 Network representation of developing microstructure. The correlation of corrected age at MRI with structural connections weighted by NODDI intracellular volume fraction index (or neurite density index, NDI), in a population of 65 infants scanned between 25 and 45 weeks of postmenstrual age (PMA). In panel (A) NDI parameters increase with age for most white matter connections, as would be expected. However, when assessed in relative terms (%) of the total connectivity in each subject (panel B and C), it is possible to separate which connections are developing at a relative faster or slower pace. This clarifies the expected heterochronicity in the early development of brain connectivity, with a general trend of connections between somatosensory, central, subcortical and temporal areas to show faster development (red) than frontolimbic and interhemispheric connections (blue). Adapted from Batalle et al.

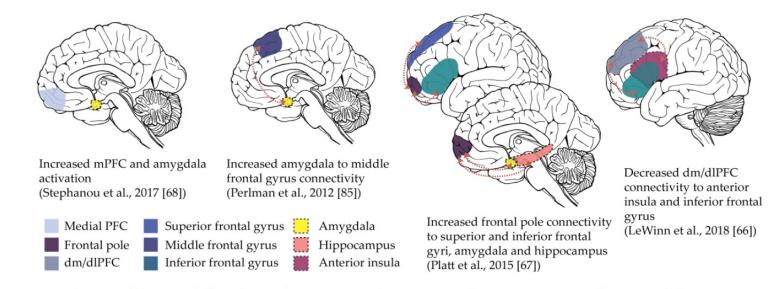
(red) than frontolimbic and interf connections (blue). Adapted from (2017) [



Leisman et al., 2015

Adolescent brain: Puberty


Summary of work by Nitin Gogtay & Jay Giedd, 2004


Luna, Tervo-Clemmens, & Calabrao, 2021

https://www.youtube.com/watch?v=Gnm8f76zx0g

Adolescent brain: Puberty

Foulkes & Blakemore, 2018

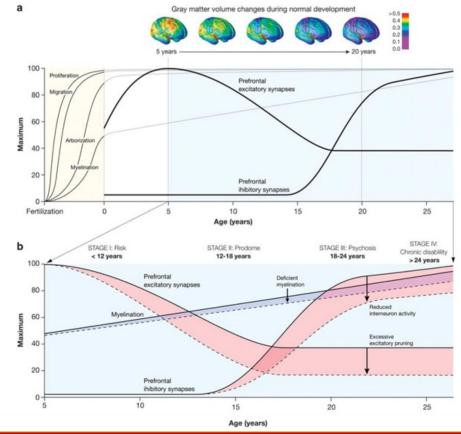
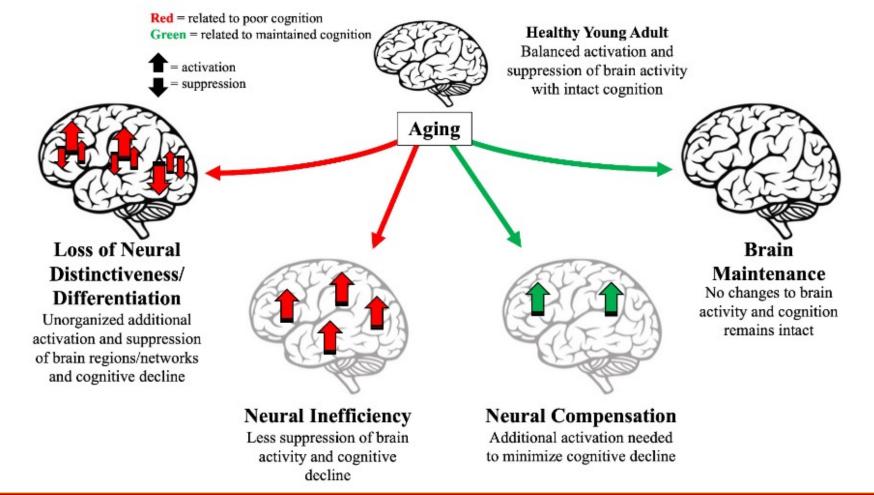

Figure 1. Patterns of altered neural activation and connectivity during emotion regulation in adolescents with depression. Overall, studies to date have demonstrated altered activation and connectivity in the amygdala and across regions of prefrontal cortex. The directionality of effects (greater or lesser in depressed compared to non-depressed participants), and the specific set of regions involved however varies across studies. (PFC: prefrontal cortex, dm/dlPFC: dorsomedial/dorsolateral PFC).

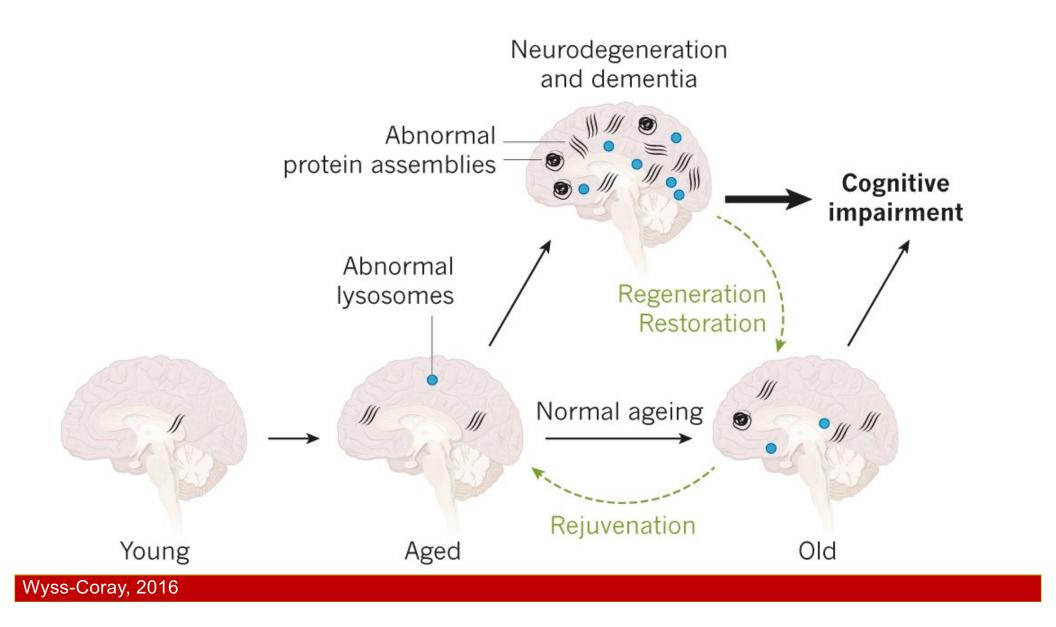
 Table 1. Reviewed evidence investigating links between emotion regulation and anxiety and depression in adolescence.
 Findings are organized according to negative and positive emotion regulation, and by methodology. (dIPFC: dorsolateral prefrontal cortex; dmPFC: dorsomedial prefrontal cortex; IFG: inferior frontal gyrus; IFL: inferior frontal lobule; MFG: middle frontal gyrus; PFC: prefrontal cortex; RSA: respiratory sinus arrhythmia; SFG: superior frontal gyrus; vIPFC: ventrolateral PFC).

Self-Report	Behavioral	Psychophysiological	Neural (fMRI)	
Normative Age-Related Changes				
Increased use of 'adaptive' strategies, less use of 'maladaptive' strategies with age [5,12].			Reduced amygdala reactivity with age [30–33], greater inverse PFC-amygdala connectivity, indicating better 'top-down' regulation [34,35].	
	Negative Emoti	on Regulation		
	Associations with sy	mptoms of anxiety		
More use of 'maladaptive' and less use of 'adaptive' strategies in anxiety disorders [36,37]. Social anxiety linked to reduced 'emotional clarity', reduced acceptance [38], and increased rumination [39].	xiety disorders [36,37]. Social anxiety duced 'emotional clarity', reduced		Positive amygdala–vIPFC connectivity during affect labeling predicted future anxiety symptoms [45].	
Associations with symptoms of depression				
More use of 'maladaptive', less use of 'adaptive' strategies in depression [36]. Specifically, less use of reappraisal [46], reduced acceptance [47] and higher suppression [48].	Mixed findings for reappraisal efficacy [49–51] in adolescents with depression.	Changes in RSA with age, linked to better 'acceptance', 'impulse control' and 'ability to use emotion regulation strategies' [52] in individuals with depression and conduct problems. RSA predicts more maladaptive emotion regulation in previously depressed adolescents [53]. Limited evidence of direct relationship between RSA and depression [54,55].	Evidence of disrupted activation and connectivity across emotion regulation neural circuitry (e.g., amygdala, PFC) in depression, but specific patterns of effects vary across studies ([49–51,56], see Figure 1).	
	Impacts link between stre	ss and psychopathology		
Self-blame, catastrophizing, and rumination mediates the association between stress and depression [57]; rumination and impulsive responding links stress and internalizing symptoms [58].	Cognitive reappraisal mediates link between depressive symptoms and 'emotional recovery' from an experimental stressor [59].	RSA mediates the association between stress and anxiety [55]	Amygdala–vIPFC connectivity during incidental emotion regulation mediates the relationship between rumination and depressive symptoms [60]	
	Positive Emotio	on Regulation		
	Associations with sy	mptoms of anxiety		
Not investigated	Not investigated	Greater number of visual fixations during positive images in adolescents with anxiety disorders [43].	Not investigated	
	Associations with syn	nptoms of depression		
Lower levels and shorter duration of positive affect [61,62], parental and self 'dampening' of positive emotions [63], lack of parental enhancing' [64] associated with depressive symptoms.	Reduced persistence of positive affect in conflict situation [65], low maternal positivity [66], and increased maternal dampening [67] associated with depressive symptoms.	Not investigated	Reduced activation of ventral striatum and PFC in response to reward (Forbes, 2011 #123 [68]), regulation not investigated	
	Impacts link between stre	ss and psychopathology		
Not investigated	Not investigated	Not investigated	Not investigated	

Young et al, 2019

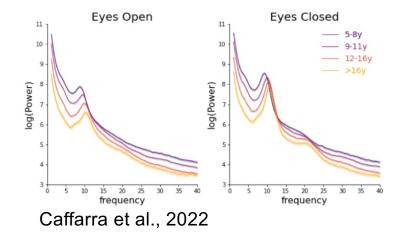
Developmental model of schizophrenia

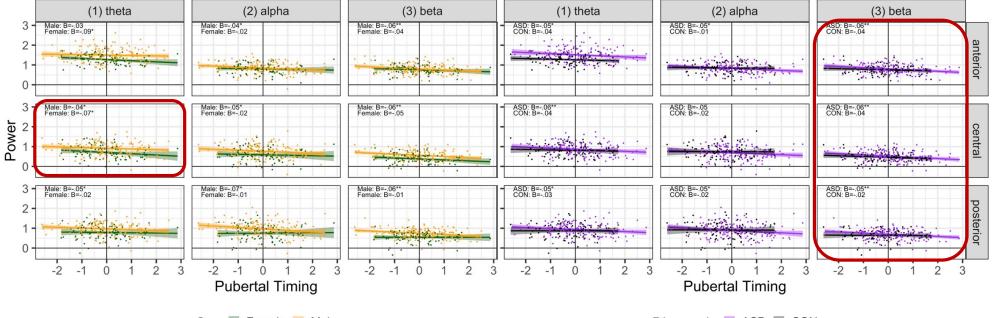



GREATER VAL DOSE IS ASSOCIATED WITH ACCELERATED CT LOSS IN COS. Differences between probands are most significant in the left dorsolateral and medial PFC and 4.2 41 HICKNESS (3.9 COS MM - - COS VM 3.8 COS VV CORTICAL 7 3.7 HC MM HC VM 3.6 HC VV 3.5 3.4 13 18 23 AGE (years)

Regions where the relationship between COMT Val158Met Val allele dose and cortical thickness change is significantly different in healthy controls (HCs) as compared to probands with childhood-onset schizophrenia (COS). The inset plot illustrates this interaction for the left dorsolateral prefrontal region, where increased Val dose attenuates cortical thinning on HCs, but accelerates it in probands with COS. Note that by adulthood, COS Val homozygotes have persistent cortical thickness deficits compared with HCs, whereas Met homozygotes do not. All colored regions shown survive false discovery rate correction for multiple comparisons at q < 0.05.85

Rapoport et al., 2012

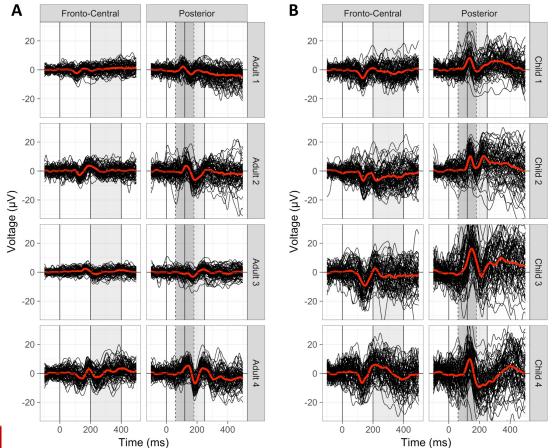

Patterns of Brain Aging


Anticipated changes: EEG spectra

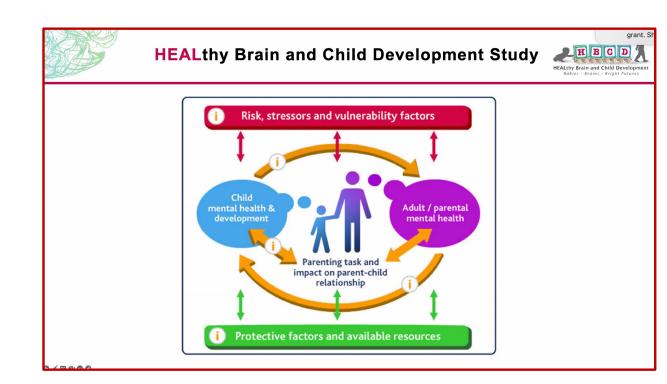
- Spectra power decreases over age
 - More specifically, new evidence suggesting that it reduces with pubertal development/maturation

Anticipated changes: EEG spectra

With relatively early pubertal maturity, spectral power reduces; Particularly notable in ASD and males



Diagnosis = ASD = CON


Rea et al., in revision

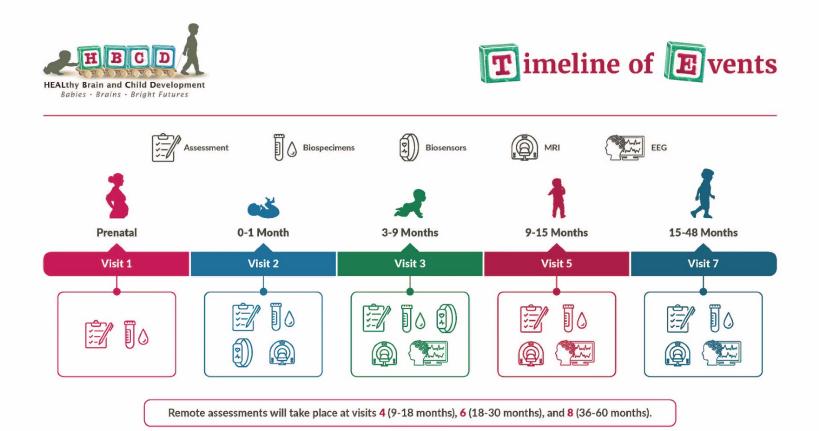
Anticipated changes: ERP

- Brain waves become faster
 - Latency reduces (i.e., peaks closer to stimulus onset)
- With synaptic pruning and increased cortical volume:
 - Amplitude decreases

Example from HBCD

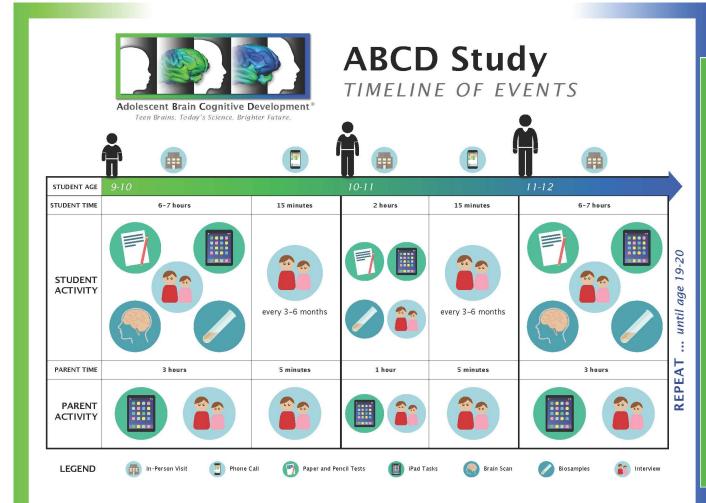
~7,200 infants 300 / site

- Funded Institutions and Locations


Phase II

- Arkansas Children's Hospital Research Institute Arkansas
- Boston Children's Hospital Massachusetts
- Cedars-Sinai Medical Center California
- Children's Hospital of Los Angeles California
- Children's Hospital of Philadelphia Pennsylvania
- Cincinnati Children's Hospital Medical Center Ohio
- Emory University Georgia
- Johns Hopkins University/ Kennedy Krieger Institute Maryland
- New York University School of Medicine New York
- Northwestern University Illinois
- Oklahoma State University Center for Health Sciences Oklahoma
- Oregon Health and Science University Oregon
- Pennsylvania State University Pennsylvania
- University of Alabama at Birmingham Alabama
- University of California, San Diego California
- University of Florida Florida
- University of Maryland Maryland
- University of Minnesota Minnesota
- University of New Mexico Health Sciences Center New Mexico
- University of North Carolina Chapel Hill North Carolina
- University of Vermont Vermont
- University of Wisconsin-Madison Wisconsin
- Vanderbilt University Tennessee
- Virginia Tech Virginia
- Washington University Missouri

HEALthy Brain and Child Development Study



Will connect to Adolescent Brain Cognitive Development (ABCD) Study

- 11,880 children enrolled at ages 9-10 across the US
- Goal is to retain 10,000 into early adulthood

ABCD Youth Protocol Summary: Baseline

Physical Health	Mental Health	Substance Use		
PhenX Anthropometrics (height/ weight/waist measurements)	Kiddie Schedule for Affective Disorders and Schizophrenia	For most participants*: Participant Last Use Survey (PLUS) for		
Snellen Vision Screener	Background Items Survey	substance use within the last		
Edinburgh Handedness Inventory	Diagnostic Interview for DSM-	24 hrs		
Youth Risk Behavior Survey - Exercise	5 (Mood, Social Anxiety, Generalized Anxiety Disorder,	PhenX Peer Group Deviance Survey		
Pubertal Development Scale and Menstrual Cycle Survey	Suicide, and Sleep modules) UPPS-P for Children - Short Form	PATH Intention to Use Tobacco Survey		
Screen Time Survey	(ABCD version)	Timeline Follow-Back Survey		
	PhenX Behavioral Inhibition/	Caffeine Intake Survey		
Brain Imaging	Behavioral Approach System (BIS/BAS) Scales			
Structural MRI	Prodromal Psychosis Scale	Culture & Environment		
3D T1 - Weighted	Youth Resilience Scale	Prosocial Behavior Survey		
3D T2 - Weighted	Toutil Resilience Scale	PhenX Acculturation Survey		
Diffusion Tensor Imaging		Parental Monitoring Survey		
Functional MRI (fMRI)	Neurocognition	Acceptance Subscale from Children's		
Resting State	NIH Toolbox Tasks:	Report of Parental Behavior		
Monetary Incentive Delay Task	Picture Vocabulary	Inventory - Short		
Stop Signal Task	Flanker Inhibitory Control &	PhenX Family Environment		
Emotional N-Back Task	Attention	Scale - Family Conflict		
	List Sorting Working Memory	PhenX Neighborhood Safety/Crime		
Biospecimens	Dimensional Change Card Sort Pattern Comparison Processing	Survey		
	 Pattern Companison Processing Speed 	PhenX School Risk & Protective		
Subset of participants: Breathalyzer (alcohol screen)	Picture Sequence Memory	Factors Survey		
Oral fluids (drug screen)	Oral Reading Recognition			
Blood (DNA)	Rey Auditory Verbal Learning Task			
Oral Fluids (DNA, pubertal	Cash Choice Task			
hormones)	Little Man Task			
Hair (substance use metabolites)				
Baby Teeth (substance and	Matrix Reasoning Task			
environmental toxin exposure)	RAVLT Delayed Recall			
A	dolescent Brain Cognitive Developmen	t*		
Teen Brains. Today's Science. Brighter Future.				
	ABCDStudy.org			

o, or Marijuana; 3) Heavy level (used (PATH) Marijuana Problem Index

	Data Sets Currently Available	Age Range (Years)	Variables Collected	Strengths	Limitations
Philadelphia Neurodevelopmental Cohort	TD: 1,445	8–21	Neuroimaging: sMRI, DWI, ASL, tfMRI, rsfMRI Other: Kiddie–SADS; Penn CNB	All data acquired on same scanner platform. Genotype available.	rsfMRI collected with relatively long TR (3,000 ms).
Adolescent Brain Cognitive Development	TD: 4,010 (inaugural data release)	9–10	Neuroimaging: sMRI, DWI, tfMRI, rsfMRI Other: Kiddie–SADS and other clinical measures, NIH toolbox, physical, cultural, biological measures	Uses harmonized HCP protocol. Genotype, longitudinal, and sleep data will be available.	Data collection ongoing. Data collection on different scanner platforms.
HCP Lifespan Development	TD: 1,350	5–21	Neuroimaging: sMRI, multishell DWI, tfMRI, rsfMRI Other: extensive battery of social, behavioral, and neurocognitive measures	Uses harmonized HCP protocol. rsfMRI collected with short TR (720 ms). Genotype, sleep data, and pubertal status will be available. Longitudinal data available for subset.	Data collection ongoing.
IMAGEN	TD: > 2,000	14, follow up at 16, 19, 22	Neuroimaging: sMRI, DWI, tfMRI, rsfMRI Other: extensive battery of social, behavioral, and neurocognitive measures	Longitudinal data collected at multiple timepoints will be available. Genotype and pubertal status available. Collaboration with ENIGMA.	Data collection on different scanner platforms. Recruitment emphasized ethnic homogeneity.
ABIDE I and II	ABIDE I ASD: 539, TD: 573 ABIDE II ASD: 521, TD: 593	5-64	Neuroimaging: sMRI, rsfMRI Other: some clinical assessments	Wide age ranges available. Preprocessed neuroimaging data available.	Data collection on different scanner platforms. Limited phenotypic information.
ADHD-200	ADHD: 285 TD: 491	7–21	Neuroimaging: sMRI, rsfMRI Other: some clinical assessments	Wide age ranges available.	Data collection on different scanner platforms. Limited phenotypic information.
SchizConnect	Schizophrenia: 384 TD: 632	0–67	Neuroimaging: sMRI, tfMRI, rsfMRI Other: some clinical assessments	Wide age ranges available.	Data collection on different scanner platforms. Phenotypic in formation varies by dataset.
Nathan Kline Institute–Rockland	TD: > 1,000	6–85	Neuroimaging: sMRI, DWI, tfMRI, rsfMRI Other: extensive battery of social, behavioral, and neurocognitive measures	rsfMRI data collected at to different TRs (645 and 1,400 ms) available. All data acquired on same scanner platform.	Limited task fMRI data available.
Pediatric Imaging, Neurocognition, and Genetics	TD: > 1,000	3–20	<u>Neuroimaging:</u> sMRI, DWI, rsfMRI <u>Other:</u> extensive battery of social, behavioral, and neurocognitive measures	Genotype available.	Data collection on different scanner platforms.

Uddin & Karlsgodt, 2018

Outstanding questions / needs

Access to research

- Participants access (undue burden?); diversity (Dotson & Duarte, 2020)
- Sharing data across sites \rightarrow Need for <u>LARGE</u> datasets

Acquisition of data

 Are methods and accommodations comparable for populations? Effort/fatigue?

Analysis

- Addressing neurodiversity: is it appropriate to find "atypical" processing (e.g., lack of clinical/env group activations)
- Prediction models, statistical decisions (Poldrack, Huckins, & Varaoquox, 2020)
- **Dissemination:** Where are those null findings?

Monday discussion

Readings targeting development

- Lloyd-Fox, S., Papademetriou, M., Darboe, M. K., Everdell, N. L., Wegmuller, R., Prentice, A. M., ...
 & Elwell, C. E. (2014). Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa. Scientific reports, 4(1), 1-8.
- Reider, L. B., Bierstedt, L., Burris, J. L., Vallorani, A., Gunther, K. E., Buss, K. A., ... & LoBue, V. (2022). Developmental patterns of affective attention across the first 2 years of life. Child development, 93(6), e607-e621.
- Almdahl, I. S., Martinussen, L. J., Agartz, I., Hugdahl, K., & Korsnes, M. S. (2021). Inhibition of emotions in healthy aging: age-related differences in brain network connectivity. Brain and Behavior, 11(5), e02052.

Goals of breakout rooms

1. 5 minutes: Identify specific needs of your populations in order to assess affective or emotional brain processes

- Clinical / Dev / environmental factors

- **2. 5 minutes**: What solutions may be used to address the needs of your population?
- **3. 5 minutes:** What needs are difficult to address or have outstanding problems?

	Needs	Solution?	Outstanding issue
1			
2			
3			
4			
5			
6			
7			
8			
n			

#1	Рор	Needs	Solution?
1			
2			
3			
4			
5			
6			